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Abstract

Spherical directivity of noise radiated from a con-

vecting quadrupole source embedded in an arbitrary

spreading jet is obtained by ray-tracing methods of ge-

ometrical acoustics. The six propagation equations are

solved in their general form in a rectangular coordi-

nate system. The noise directivity in the far field is

calculated by applying an iteration scheme that finds

the required radiation angles at the source resulting in

propagation through a given observer point. Factors

influencing the zone of silence are investigated. The

caustics of geometrical acoustics and the exact location

where it forms is demonstrated by studying the vari-

ation in ray tube area obtained from transport equa-

tion. For a ring source convecting along the center-axis
of an axisymmetric jet, the polar directivlty of the ra-

diated noise is obtained by an integration with respect

to azimuthal directivity of compact quadrupole sources

distributed on the ring. The Doppler factor is shown

to vary slightly from point to point on the ring. Fi-
nally the scaling of the directivity pattern with power

-3 of Doppler factor is investigated and compared with

experimental data.

Introduction

The study of aerodynamic noise has its foundation

in Lighthill's acoustic analogy. By defining the source

term in his theory of aerodynamic sound generation, he
opened the door to a vast scientific knowledge already

developed in theoretical acoustics. Besides the genera-
tion aspects of the sound which have been extensively

researched in the past [1, 2], the propagation through

moving fluids is an important aspect of jet noise com-
putation. When we compare the acoustic wavelength

with the characteristic length of the flow, within the

three-way subdivision, two are relatively easier. The

easier cases, as noted by Lighthill [3], correspond to
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situations when the emitted wave has a wavelength

much shorter or much longer tha_: the characteristic

length of the flow. The high frequency solution ap-

pears to provide a reasonably good approximation even

at Helmholtz numbers as small as one [4, 5, 6], and is
of particular interest in prediction of noise directivity

for high speed jets.

A number of investigators have studied the radi-

ation field of multipole sources immersed in parallel

sheared flows. Gliebe and Balsa [7] and Goldstein [8]

studied the sound/flow interaction for round jets with

arbitrary velocity profiles assuming quadrupole sources

convecting along the centerline in both high and low

frequency limits, respectively. The generalization to ar-

bitrarily located sources in continuously varying mono-

tonic profiles were derived by Balsa [9] and Goldstein

[10, 11]. For a parallel flow study, Lilley's equation is

considered as the starting point by most investigators

studying the sound/flow interaction. For axisymmet-

tic jets, the Green's function solution to a convected

monopole of frequency w is obtained by applying a se-

quence of Fourier transformations. The solution for

multipole singularities is derived by differentiating the

monopole solution with respect to appropriate source

coordinates. Mani, Gliebe and Balsa [12] provide a

comprehensive analysis of the shielding effects of par-
allel jets when velocity and temperature profiles are

functions of the radial variable only. Their derivation

was used by the present authors in the computation of

supersonic jet mixing noise of a CD nozzle [13]. Schu-

bert [14, 15] computes the directivity pattern of a har-
monic point source on the axis of a subsonic jet flow

with a carefully selected velocity profile. He compares

the ray acoustic solution with the wave acoustic pre-
dictions based on the finite difference solution to con-

veered wave equation. He concludes that the presence
of downstream zone of silence is primarily due to re-
fraction rather than an inherent characteristic of tur-

bulence generated noise. His computations show that

the geometric acoustics solution predicts an axial re-
fraction valley much deeper than the observation and

he argues that this difference is due to the diffraction



effectat lowerfrequencieswhichis missingin a ray

acoustic prediction.

To study the effect of asymmetry in the mean

flow, Goldstein [16] solves Lilley's equation for high fre-
quency multipole sources in a parallel jet flow whose

Mach number and temperature are functions of the

cross-flow coordinates. In the high frequency limit one

can recover equations similar to those governing the

two-dimensional waves generated by a line source in

a non-moving medium with variable index of refrac-

tion. Avila and Keller [17] solved this problem us-

ing matched asymptotic expansions. The correspond-

ing sound field directivity is determined by solving a

fourth order ordinary differential equation which finds

the projection of rays on a cross-flow plane. This so-

lution technique, though successful in giving a quali-

tative picture of circumferential directivity of jet noise

for non-axisymmetric plumes, fails near the zone of si-

lence. Within the boundary of the zone of silence of

a source, the acoustic rays get trapped in an envelope
that prevents the radiation to the far field.

Thus, a full three-dimensional ray-tracing ap-

proach becomes necessary where one can study the re-

fraction of acoustic rays as they emerge from the source

on their way to a distant observer. This solution tech-

nique provides the tools for investigating the zone of
silence as well as the caustics of geometrical acoustics.

A high frequency Green function for a convecting

multipole source in a spreading jet was developed by P.

A. Durbin [18] and was applied to predict the directiv-

ity of noise for a source convecting along the center-axis

of an axisymmetric jet. The symmetric nature of this

problem, confines the acoustic rays to a constant az-

imuthal plane and thus, reduces the number of propaga-

tion equations from six to two. Following the methodol-

ogy described by Durbin [18, 19], an attempt has been

made here to predict the spherical directivity of a con-

vecting quadrupole source in an arbitrary flow. The
six propagation equations are solved in a rectangular

coordinate system. As we shall describe under numeri-

cal results, the solution to the corresponding boundary

value problem based on specified source and observer

locations, requires an iteration on the initial ray angles.

The jet spreading as well as plume profile strongly in-

fluence the size of the zone of silence. The jet spreading

does not necessarily remove the zone of silence; rather

velocity gradients near the center-axis have a dominant

role in defining the boundary of the zone of silence. The

neighbourhood of the caustic is described by studying

the variation in ray tube area obtained from the trans-

port equation. It should be emphasized that the flow

gradients should be small:for the geometric ray theory
to work. For cases when shocks are present, special

treatment will be necessary to properly trace the rays

across a discontinuity. In addition, no attempt has been

made here to derive expressions valid near the caustic,

although solutions similar to those derived for a still

medium can be expected [20, 21, 22].

Governing Equations

The relevant equations are the linearized gas-
dynamic equations governing the propagation of small

disturbances through a steady mean flow. For a source

with time harmonic factor e -iwt the inhomogeneous

equations of continuity and momentum are

-iwp' + U. (Up' + up) = a2Qd

-i_u+ U.Vu+u.VU + V(a_p'/p) =-(a2/p)Q,, (1)

where p' and u are the density and velocity of the acous-
tic fluctuations and p and U are the corresponding

quantities for the mean flow, a is the mean flow sound

speed and Qd and Qm represent the source terms. In

a region not close to the source, the amplitude varia-

tion ofthe acoustic disturbances is slow and a high fre-

quency solution to the homogeneous form of equations

(1) can be found by substituting the classical expan-
sions in inverse powers of the wave number k = w/ar:

P' = {e+ (1/ik)#, +... } e ikz(x)

u = {v + (1/ik)vl +... } e (2)

where ar is a typical reference sound speed. Factor-

ing the coefficients of equal powers of k and setting

each factor equal to zero independently, one can find

a series of equations describing the behavior of wave

fronts of constant phase and equations for transport of

energy. The first of such equations is eikonal equa-

tion. It describes the change in the normal to the
phase front due to refraction caused by nonuniformi-

ties in the flow velocity and temperature. Introducing

the normal to the phase front as p = VL, and Mach

number M = U/a and dimensionless sound speed

C(X) = a/ar, the eikonal equation is expressed as

(M_pi - 1/C) 2 = PiPi. (3)

The rays generated by the eikonal equation are solved
by the method of characteristics. Thus, along the ray

X(t) and p(t)can be calculated by solving a system of
six ordinary differential equations [18, 23]:

,t, = T,¢p¢+ M,/C (4)

1 aTj_ 0 .Mj. I 0 "C 2-
v, = - ). (5)



Tensor Tq is related to Much number M; (Tq = 6..j -
M_Mj). The initial conditions for equations (4) and (5)
are the source location X = Xo and the direction at

which the ray leaves the source. Along the ray, velocity
can be expressed in terms of unit vector X and ray

speed A =1 X [ as X = AX:. Substituting X in (4) and
solving equations (3) and (4) simultaneously, one can
find p as

1 M
p = A:_ + (_ M - _)_-_ (6)

= [.f12+ (2.. ' (7)

where fla : 1 - [M is. When the source is placed

at the vertex of a cone of semiangle p with axis par-
allel to X (referred to as cone of emission), each
ray can be defined along the generator of the cone
through angle 5 (figure 1). Along such a ray the ini-
tim direction can be expressed through unit vector
Xo = (cos p, sin p cos 6, sin p sin 6). The correspond-

ing phase normal Po is given by (8) and (7) provided
that flu2 _ 0; where subscript o applies to the source
location. When the source Much number equals one, it
can be concluded from (6) and (7) that

.5Mo )/(Co_,o. Mo), I Mo I= 1.
po=(Xo Xo.Mo

(8)
Now when the flow becomes supersonic, the ray speed
_o as given by (7) is real only if

1 - I Mo 12+ (Xo" Mo) 2 )__O. (9)

It can be shown that this condition is always true pro-
vided that the limit value on the direction of emission

at the source is imposed. If X is the angle between
the Mach vector and X and ¢ is the corresponding
angle between the Mach vector and the phase normal
p one can show that along the ray I M I sin x =
sin (¢ - X). At the source this relation translates into
I Mo ] sin Xo = sin (¢o -Xo) < 1 which guarantees
that (9) is always satisfied. As the jet Much num-
ber increases, angle Xo should decrease accordingly for
I Mo I sinXo < 1, resulting in a reduction in the limit
value for the cone angle/z.

The transport equation, obtained from the next
order of k in the governing equations, can be simplified
as

V.(p_:F 2) = O, r = (alp)
b - i -p" (10)

Equation (10) leads to the wave action conservation
equation [24] which states that the action contained in
a wave packet is invariant along each characteristic line

AF2pJ = constant (11)

where J measures the variation of the ray tube cross-
section along each ray. The variation in the ray tube
area can be expressed in terms of a transformation
which maps the initial ray angles (p, 6) onto the final

direction at the observer location (r, 000, ¢o0). Assum-
ing that in the far field the rays become straight, it can
easily be shown that

a(oo,, ¢oo)
s=,2sin0.,l 0(u, 6) I. (12)

Thus, the field amplitude e is obtained from equation
(11) once the elemental wave front area J has been de-
termined. To find the constant in equation (11), an ap-
propriate near source solution satisfying (1) is asymp-
totically matched with the outer solution. The details
of the analysis are spelled out in [18] and are not re-
peated here. If ar is taken to be the stagnation sound
speed a_o, the first term in the high frequency approx-
imation for equation (2) is

p' o¢ oeikL = 1 Co 1 -- _ .p ×
(4--_r)(C -) 1 - p_ -po

ttoo

} 112
p Aaosinp Co2 e itL. (13)

Po A sin Oool _ l

This Green function can be used to derive an expres-

sion for the mean square pressure for a convecting
quadrupole source [16, 18]. In the high frequency ap-
proximation the source frequency Wo can be related to
the observer frequency w through the Doppler factor

Uc

w = Wo/(1 - _. Po) (14)
aoo

where Uc is the source convection velocity.
If the spectral power intensity for the source is

represented as [ Q(wo)12, the source power within a

narrow-band Awo is Qoa = ] Q(wo) ]2Awo. The result-

ing mean-square pressure directivity for a convecting
isotropic quadrupole is given as

t 1 ,_2. 4,.-,2, P--Ao a-- sinp
_/(_,X) oc ,4rr j _o htot-_o)(--_-)(_)x

(1- m.po)2(l_ u .p)2
_ao 0oo (15)

It can be seen from (14) that the source frequency
should be different from point to point in order for a



fixedobserver to hear the same frequency.This ises-

sentiallydue to refractionphenomena resultinginvari-

ation ofPo for each ray reaching a given observer and

willbe explored laterby computing the Doppler factor

forsource points distributedaround the axisofan ax-

isymmetric jet.It isalso important to remember that

for the purpose of numerical computation of equation

(15),no attempt has been made to specifythe source

strength.Determination ofthe source correlationterm

and itsspectrum, by itself,isa major area of research

incomputational aeroacoustics.An approach based on

computation of turbulencekineticenergy and itsdissi-

pation rate using CFD isdescribedin [13].

Velocity and Temperature Profiles

In order to integrate the propagation equations,

the jet velocity and sound speed are expressed in a

closed form to speed up the computation of derivatives.

For a jet spreading at angle a, a self-similar velocity
profile with appropriate decay characteristics can be

expressed as

U(r, O)/a = (U/a)OL e-(_)" (16)

where (U/a)CL is the Mach number on the centerline
and 0 is the polar angle defined earlier. The velocity

decay on the center-axis of the jet has been measured

experimentally for different nozzle geometries and exit

conditions. For a convergent nozzle, the peak Mach can

be expressed as a function of axial distance parameter

L= [25]

(U/aoo)OL= (%/aoo) {1+

X/D

L= -- C, x/y___ _. (17)

The jet exit Mach number Mj = Ui/aoo can vary in

a relatively wide range and C, = .82 . D is the exit

diameter and X is measured from exit plane (figure

1). Using the adiabatic flow relation combined with

equations (16) and (17), the Mach number and sound

speed are given as

}-112
U J1 + (.15Lx) 4 7 - 1 e_(_ ).M_ m _

. (U l.oo) 7

c=" {1+7-1 u 2}-v2a'_ = --_(a ) . (lS)

A large value for exponent n corresponds to a slug flow
profile which is the the characteristic of the exit. By

allowing n to gradually decrease in flow direction, one

can recover a Gaussian distribution for the downstream

profile. To illustrate the refraction effects, two plume

models have been considered. In model one, n is con-

stant (n = 4), corresponding to a top-hat shape for M.
In model two, n starts from near 6 at the exit and de-

cays to 2 at about 12 diameters from the exit according
to

5b

n=(X/D+ .1) 1"25 +b +1' b=5. (19)

This changes the shape of M from a top-hat to a Gaus-

sian as the flow develops. The velocity profiles for the

two models are illustrated in figure 2 for a jet spreading

at a = 100. The location of the exit plane is defined as

the section at which the jet diameter is one. In the fol-

lowing numerical computations the jet exit Mach num-

ber is Uj/aoo = .99 and the source is at seven diameters
from exit plane where Uo/aoo = .87 on the centerline.

Numerical Results and Discussion

The spherical directivity pattern corresponding to

equation (15) can be written as

.A_.. sinp .(1- u_ .po)2(l_ _ .p)2
O(

(1 - ,u___.po)5 I _ I

(20)
where Uo is the mean flow velocity at the source lo-

cation and in general is different from the source con-

vection velocity Uc. For a parallel jet, the directiv-

ity pattern outside the zone of silence is commonly

accepted to follow the Doppler factor to -3 power.
For a spreading jet, this remains valid, that is p2 oc

(1 - Uo. po/aoo)2/(1 - V¢. po/aoo) 5, as long as the

source is convecting along the center-axis of an axisym-

metric jet.

As the source is placed off-axis, the non-axisymme-
tric nature of the problem creates a directivity pattern

that will not follow the above simple rule; rather the

source eccentricity as well as the relative azimuthal an-

gle between the source and observer will influence the

directivity pattern. However, the directivity due to a

ring source, obtained from the circumferential integral

of the noise produced by compact quadrupole sources

distributed on the ring will be shown to, more or less,
follow the Doppler factor to -3 power outside the quiet-

ing zone. Here for numerical computations, the source

convection velocity is taken to be a weighted average

of the mean flow velocity at the jet exit and the source
location

U__.._¢= .5(Uo) + f_(Uj) (211
avo a_ a¢o

where _c is an empirical constant. The source location

at any axial section is defined through angles 0o and

¢o.



To investigate the boundary of the zone of silence,

the source was moved toward the centerline by changing

0o while X/D is constant. For a ray beaming straight

downstream (p = 0), the final polar angle 0* is pl0t-
ted vs. the source location. It should be noted that

in order to arrive at the boundary of the zone of si-

lence, emission at nonzero values of # should also be
considered. When a ray is emitted towards the axis

(# ¢ 0), a complete refraction can result in propagation
of noise to shallower angles than those defined through

(# = 0). However, subsequent ray-tracing shows that

for high speed jets, there is little difference between the
two results. This difference disappears as the source

approaches the centerline.

Figure 3(a), corresponding to model one, shows

how the zone of silence (defined through angle O* )
can be eliminated by allowing a small jet spreading an-

gle. For model two, however, figure 3(b) shows that the
zone of silence is still present even at spreading angles

as large as a = 20 °. This comparison clearly demon-

strates the significance of velocity gradients in bending

the rays away from the center axis. Rays that are emit-

ted near the centerline should travel a relatively longer

distance before they get refracted and as a result they

run into high gradient regions of the plume (similar to

the Gaussian profile in model two) and a zone of si-

lence is formed. Another significant observation that
can be made here is related to what is termed the "qui-

eting zone". As the source moves away from the center,

there are rays emitted on a cone of emission with # > 0

that can go through complete refraction and reach val-
ues of 00o smaller than 0*. Therefore one can conclude

that within the zone of silence, the sound pressure level

(SPL) does not drop to zero at once; rather there is a

gradual decay in noise level. As the jet spreading angle
approaches zero, the size of the zone of silence in both

3(a) and 3(b) approach the parallel flow solution given
as

1
O* < cos -1

Co(1 + Mo) (22)

where Co = .92 and Mo = .94 at X/D = 7.

In all remaining discussions the jet spreading angle

is held at a = 10° and the convection velocity follows

equation (21) with/3 c = .3. For a source on the axis, the

sound field is axisymmetric and results similar to those

given in [19] are found. In figure 4 the slope of the curve

within the quieting zone will in general be sensitive to

the jet spreading angle. To compare the present predic-

tion with data, Stone's correlation [26] was employed.
The directivity pattern P--5(1-Mc cos 0) 3 obtained from

these correlations is identically equal to one outside the

quieting zone; within the quieting zone the slope gradu-

ally increases with frequency. For a Helmholtz number

of He = fD/a0o = 31.6, the data correlation shows a

slope of 190 per octave compared with 10.5 ° per octave

calculated from the high frequency geometrical theory.

As we shall demonstrate later on, by using a ring source,

this difference in slopes narrows down substantially. In

applying Stone's correlation, the convection Mach num-

ber for the source was substituted according to equation

(21).

When the source is placed off-axis, the numerical

work in solving the propagation equations is greatly in-

creased. In general an iteration process should be ap-
plied to find a ray that propagates through a specified

observer location. Figure 5(a) shows the variation in
the shielding effect as a function of source eccentricity.

The source is placed at three locations defined through

Oo= (0, 2", 5o) with = 0 and x/m = 7 while the
azimuthal angle for the observer is held at _0o = 0.

Notice that as the source is brought closer to the ob-

server, the shielding effect of the mean flow decreases in

downstream directions resulting in an increase in SPL

while an opposite effect is observed upstream. Accord-

ing to figure 5(b), as the source move further away from

the axis, the SPL does not scale with power -3 of the

Doppler factor.

Of particular interest is the spherical directivity

of an off-axis convecting quadrupole. This is demon-

strated in figures 6 and 7 for a source at 0o = 5° and
¢o = 0. The polar directivity at constant ¢0o is given

figure 6 while the corresponding azimuthal directivity is

plotted in figure 7 for a range of the parameter 0oo. In

general one can observe an increase in azimuthal vari-
ation of sound further downstream. For 00o > 1100,

an increase in SPL is predicted as the observer moves

azimuthally to the opposite side of the source. In fact if

the computation is carried out for ¢0o > 160 ° , a singu-

larity starts to develop at ¢0o ---* 180" and 00o --* 141'

as the Jacobian in equation (20) approaches zero (see

figure 8). This indicates a reduction in ray tube area

resulting in focusing or concentration of rays in a neigh-
bourhood which is the caustics of geometrical acoustics.

The sound field obtained according to equation (13) is

essentially the first term in asymptotic expansion in in-

verse powers of wave number. As was pointed out by

J. Keller [20, 27], the zero-order term in this expansion

can become infinite even when the field is perfectly reg-
ular.

A uniform asymptotic expansion at the caustics for

a still medium was suggested by Ludwig [21] in terms
of the Airy function and its derivatives. A more rigor-

ous analysis was suggested by Zauderer [22] by looking

into the modified forms of asymptotic expansions of

the reduced wave equation in transition regions. One

might expect similar expansions for the case of a mov-

ing medium. No attempt has been made here to replace

equation (13) with a solution uniformly valid near the



caustic;rather a simple extrapolation of the solution

given in figure 7 was applied to predict the field at

1800 > ¢co > 160 °. Assuming that a ring source is
obtained from the superposition of independent corre-
lation volume elements distributed around the center

axis, for an axisymmetric jet one can simply integrate

the area under each curve in figure 7 and compute the

sound field due to a convecting ring source. This idea

can further be extended to an entire jet by subdividing

the plume into axial slices that are formed from ring
elements.

The most important result of the present theoret-

ical prediction is summarized in figures 9, 10 and I1.

The noise directivity for a ring source is shown in figure

9. The presence of a caustic manifests itself as a change

in slope around 120 degrees. Such a change in slope can
also be observed in most experimental reports on the

directivity of jet mixing noise [26]. Figure 10 presents

the Doppler factor as calculated from the ray theory
normalized with respect to the conventional definition

based on the line-of-sight method. Each curve repre-

sents the change in the Doppler factor as the source is

allowed to navigate on a ring relative to a fixed observer

at 0_. This can clearly be attributed to the required

change in the initial direction of the ray as a function of

source location. Finally, the scaling of directivity with

power -3 of the Doppler factor is investigated in figure

11. Within the quieting zone, the prediction gives a

slope of 17" per octave compared with 19.3 ° per octave
computed from Stone's correlation with a Helmholtz

number of 31.6. This is a significant improvement over

the earlier comparisons for a point source. It should

also be noted that even at a Helmholtz number of 10,

the data correlations give a slope of 23* per octave, not

too far from our high frequency prediction.

Concluding Remarks

It was shown, through a relatively simple jet

model, that geometric acoustics can be employed to

study the propagation of high frequency jet noise.

Based on the model jets considered here, it has been
demonstrated that a zone of silence is formed near the

downstream jet axis. The size of the zone of silence can

vary with source location. Further it was shown that

ray focusing results in formation of a caustic upstream

and azimuthally on the opposite side of the source, tLay

acoustics is a particularly powerful tool in investigating

noise directivity of non-axisymmetric jets. These com-

putations can easily be extended to supersonic jets. For
a supersonic jet, the maximum value for the semiangle
of cone of emission of a source should decrease with in-

creasing the mean flow Mach number. Finally, further
improvements that need to be considered are:

(I)

(2)

the effect of source anisotropy can be studied by

replacing Q with Qopipj/I p 12 in equation (15);

the Doppler factor as defined in this analysis

should further be investigated for supersonic jets

where the conventional definition becomes singular

at 0_ = eos-ll/M,.
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